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Abstract

( Y work focuses upon developn nent of tech -
niques forchoosing among a set of alternatives
in the presenice of incomplete information and
vatying costs of acquiting, infonmation. In oui
approach, we model the cost and utility of vari-
ous alternatives using pataeterized statistical
models. By applying techmigues from anare g of
statistics called pararncter estimation, statistical
miodels can be infened from dataregarding the
utility and infor mation cost of cachy of thie vari-
ous alternatives,  ‘These statistical models can
then be usedto estimate theutility and cost of ac-

quiting additional infonnation and the utility (I
selecting specific alter natives from the possible
choices at hand. We apply these technigues (o
adaptive problem: solving, atechnique inwhich
asyste mantomatically tunes various contiol pa

aimclers on a petfotmance element to improve
performance ina given domain. We present e

pincal results comparing, the effectiveness of
these techniques on speedup learning fronn a
real wor 1d NASA schedoling domain and
schicdule quality data from the same rcal world
NASA scheduling domain.

1 INTRODUCTION

Inmachine learning and basic dec ision making, in
Al, asyster st often reason about alteinative
courses of actioninthe absence of petfectinfornma
tion. Inmany cases, acquiting, additional inforn -
tionmay be possible, buthas associated withitsore
cost. A central problemof juterestto Al 1esearche
crs, and statisticians 1s thatof designing stiategics to
balance the costof acquiting additionalinformation
against the expected utility of the informationto be
acquited, For example, when choosing among, ascl
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of actions, one conld gathwer furihicr iInfor mation
which might helpy mhake you 1 decision (at some
cost), orone might simply mak ¢ a decision. If one
decides to gather furiher information, which infor-
mation would be the mostuseful? When one wishes
some sori of statistical guarantees on the (local) op
timality of the chioice and/or the gaarantee of 1atio
nality, astatistical decision (Ilcor(’ (it” fratncwak is
useful. To sumnyanize, this problem of decision
making with incomplete infor mation and informa-
tion costs can be analyzed in two paris:

Al: Now mwch information is cnough? At what
point do we have adeguate information to se-
lect one of the alternatives?

A2 11 one wishes o acquite more information,
which information will allow us to make the
best possible decision at hand while miniiniz-
g information costs?

Possibile solutions to this decision making quanda-
1y dependonthe contextin which the decision is be-
g ade. This  paper focuses upon  the
decision making. problems involved in adaptive
problem solving.  Adaptive problem solving, oc-
curs when a systemhasa nuimber of contiol points
which affectits performanice over a distribution of
problemns, When the systemn solves a problemn with
agiven Setof setling s forcontiol points, itproduces
arcsultwhich has a conesponding utility, The poal
of adaptive probl e solving is: given a problem
distiibution, find the setting, of control points which
maximizes the expected utidity of the result of apy

plying the systern to problemns in the distribution.

More rigorously, the adaptive problem solving,
problen can be descrnibes as follows, Given a flex-
ible p etformimee clement PE with control points
Py CPy whiere cach contiol point CPy conr ¢-
spondstoapatticularcontrol decision and for which




there is a sct of allernative dec ision methods
Mi .Mt contiol strategy s a selection of aspe-
cilicmethodforevery control point (¢ .g., STRAT
<MjaM; . Miap,..>). A contiol stratepy deter -
minges the overallbehavior of the scheduler, Itnay
ellect properties like computational efficieney o
the guality of its solutions. 1 .ot PE(STRAT) be the
problein solver opetating, under a pariicular control
strategy. The function UPE(STRAT), d) is a 1eal
valuedutility function that is amcasure of the good-
ness of the behavior of the scheduler over problem
d. ‘The goal of leaning comnbe expressed as: given
aproblemdistiibuion D, fid STRAT so asto maxi -
mize the expected utility of PY. Yxpected utility is
defined formally as:

> UPESTRAT), dy % probability(d)

dc b

Forexample, ina planming system such as PRODI-
GY [Minton88], when planning (o achicve a poal,
cont1ol points would be: how to sclect till operator
to use 1o achicve the goal; how to scleet var iable
bindings to instantiate the operator; ete. A method
for the operator choice control pointmight be a set
of controlrules to deter mine which operators to use
to achicve various goals plus a default oper ator
choice methiod. A strategy would be aset of contiol
rales and defavlit macthods for every contiol point
(c.p., one for oper ator choice, one for binding
choice, ete. ). Utility might be defined as a function
of the time 10 constroct a plan, cost to execute the
plan, orsome overallmeasure of the quality of the
planproduced.

Given the context of adaptive problem solving, the
question Al from above “how muchinformation is
cnough” can be further claborated. Tnadaptive pro
blem solving, the expected utility can be inter-
picted as averape utility from the performance
clement on a per problein basis. This micans that
“how much inforimation is enough” gencrally de-
pends upon the amotdization penod for learned
knowledpe, therclative costof acquiring additional
information and interactions between sueeessive
choices. "These issues are the focus of other work

1. Note thiat a 1nethiod may consist of smaller elements
so that a icthodmay be a set of control ules org combi-
nation of heuristics. Note also that @ method miay also
involve real valued paramceters, Henee, the nmibet of
micthods fora control pointimay be in finite, and these may
be aninfimite nuinber (11 strategics.

[Gratch and Delong 93], and aie not directly ad
diessed by thie work desenbed in this abstract.

Question A? from amV'cis “fmd whichiinformation
will allow us to make the best possible decision at
hand while minimizing information ((I1sls”. This
question can be cast In two ways: 1) fora given
amount of resources, which information should 1
get to maximize the expected utility of of the out-
comemy decision;and 2) given that T want to have
acertain confide nee levelin the goodness of iy de-
cision (c.p., Jocal optimahity), how canlachicve this
while expending the leastresources possible.

Thisabstiactfocuses onquestion A?, namely: “find
which information Will allow us tomake the best
possible decision athand whi le mininizing infor-
mation costs’.  Specifically, our approach draws
upon techuques from statistics in the of arca of”
parametric statistical models to model the uncer-
tainty in utility and mforination cost est nnates. In
paramctiie statistical models, one presumes that
dataisdistiibuted according to some formof model
(c.\\,, the normal distiibution, the poisson distribu-
tion, ¢tc.). This distubution can be descr ibed in
terms of afixed Set of patameters (such as nican,
vatiance, ete.). I one caninfer therelevant parame-
ters for the distiibution underlying the data (s0
called parameter estimation), then because the
uncetlainty inutility estimates is explicitly mod -
clled inthe statistics, thiree types of questions 1e-
garding utility canbe answered:

B1: whichaltetnative hasthe highestexpectedutil-
ity;

B2: how certainare we of thistanking of the alter -
natives: and

B3: how much is this unceriainty likely to change
if weacquire additionalinformation.

(Correspondingly, the samnce approach can be vsedin
modelling the cost distribution. Hence the expected
cost of acquiting additionalinformation ¢ also be
cstimated.

of course, the accuracy of all of these estiinates is
dependentupon the good ness of fit of the paranet-
1codelused tomodel theuncer tainty and cost es-
timates. Generally, we use the nors nal (gaussian)
distribntion modcl as owr paramets ic model. Yor tu-
nately, the normal distribution has the strong, prop-
criy that it is a good approximation to many forms
of distributions for rcasonably larpe sample sires
(duc 1o the Central Timit Theorein).
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I'hus, using, techniques from parameter estimation
and analysis of the data, we can answer questions
B1, B2, & B3 fiom above egarding utility and esti-
mate expected cost of information. The remaining
task is to apply decision theotetic methods to deter-
mine the answers to questions AT and A2 from this
infonmation. Woiking towaids this goal we have
developed two genctal approaches to addiessing,
this problem: dominance- indifference and - ex-
pected loss.

The Tust set of methods, called interval based
methods, involve quantifying the vncertainty in
competing hypotheses by computing the statistical
confidence that one hypothesis is better than anoth-
1 hypothiesis. Once this confidence has been com
puted, the system attempts to allocate examples to
efficiently show that one hypothesis dominates all
the other hypotheses with some specified confi-
dence. ‘These methods also rely upon an indiffer-
ence patameter, which allows it o show that the
preferied hypothesis is quite similar in expected
performance o another hypothesis with some con-
fidence, thus making, the preferred hypothesis is ac-
ceptable.

r

I'he second set of methods uses the decision theoret-
ic concept of expected loss [Russell & Wefald 89,
Russell & Welald 933, which measutes the probabil-
ity that a Iess preferable decision is made weighted
by the lost ptility with 1espect to the alterative
choice. More specifically, the expected loss of util-
ity from adopting, option }; over option 1 with
corresponding utility distributions U; - and Uj to be
the integral of vy ¢ U uj ¢ Uj, over all theregions
where uj > g, of Py, vp) (uj - ). In the ex-
pected loss approach, the system acquites informa-
tion until the expected loss is 1educed below some
specified threshold. This approach has the added
benefit of not attempting, to distinguish among, two
hypotheses with similar means and low vatiances
(c.g., it1ccognizes indifference without a separate
indiffercnce paraeter).

T‘o1 both the interval based and expected loss ap-
proaches, when selecting a best hypothesis, onc
must base this selection upon compatisons of the
utility of the “best” hypothesis to the other possible
hypotheses. Because there are multiple comipari-
song, the estimate for the overall ervor (o1 confi-
dence) in a conclusion of sclection of a best
hypothesis, is based upon multiple smaller conclu-
sions. For example, if we wish to show that H3 is

the best choiee among, 111, 112, 13,114, aud 115, in
the interval based approach, we might show that
N1 and 13 are indifferent, that 13 dominates 12,
113 dominates 114, and 13 dominates 115, Thus if
we wish a confidence fevel of 95%, with a straight
sumn error model and equal allocation of error, cach
of the individual hypotheses would need a 98.75%
confidence level (since 4 x 1.25% = 5%).

The exactformof the relationship depends upon the
patticular crror modelused. However, sampling ad-
ditional examples to compae 1elative utilities of
various alternatives can have varying effect upon
the overall crron estimate, based upon patameters of
the particulan distiibution. Also, selecting an exam-
ple from different distributions can have widely va-
1ying cost. Thus, inmany cases, itmay be desiiable
1o allocate the enror estimates unequally. While we
have implemented default strategics of cqual allo-
cation of crrors, we have also developed algornithms
which allocate the error unequally. Inthisapproach,
the systen estimates the marginal benefit and mar-
ginal cost of sampling to extract another data point
to compare. two competing hypotheses. The mar-
ginalbenefit isestimated by computing the decicase
inthe crrot estimate (o increase in confidence esti-
mate) duc to acquiting another sample presuming,
that the statistical paraicters 1eiain constant (c.g.,
in the case of the normal distnibution, that the sam-
ple mean and variance do not change). The margin-
al cost is estimated using, estimated parameters on
the cost distribution for the 1elevant hiypotheses.
The system then allocates additional examples pref-
criing the highest ratio of marginal benefit to mat-
ginal cost,

For the expected loss approach, a comparable com:
bination of expected losses is used.  In this ap-
proach, the expected loss of choosing 11 is the sum
of the pait-wise expected losses from choosing Hi
over each of the other Hy's. Again, depending upon
the exact parameters of the utility distributions, al-
locating examiples to cach of the pair- wise expected
loss computations will have varying cffects on the
sum of expected losses.  Additionally, exactly as
with the interval based case, the cost of sampling
also varics. Thus, allocating, examples to the pait-
wise computations uncqually can be advantageous.
Conscquently, we have also implemented an ex-
peeted loss algotithin which uses the estimated mat-
ginal cost and  estimated marginal benefit of
sampling to allocate sampling 1esoutces. Thus, in
all, theie are four new algorithins, interval- based




cqualerrorallocation (S1°01'1), interval-based un-
cqual ctiotallocation (STOP2), expected loss equal
dlot.aliott (11.1), and expected loss unequal alloca -
tion (131.2)°.

2. EMPIRICAI
EVALUATION

PERFORMANCIE

We now tuti toan empirical evaluation of the hy -

pothesis sclection techniques . This evaluation
lends suppott to the techiniques by: (1) using syn-
thetic data to deiponstrate that the techniques pes-
formas predicted when assumptions are met and (2)
using atcal - world hypothesis sclection problem to
demonstiate the 1obu stness of the approaches . As
the interval-based and expected 10ss approachies use.
different pataincters which are incomparable, we
fnsttestthe interval- based and expected 10ss a1
proachies sepatately and then compare then head-

to head in arcal- wor ld compehensive test.

2.1 SYNTIHIETIC DATA

Synthetic data 15 Y sed to show that the techniques
petfor m as expeeted when the undetlying assuimp-
tions are valid. 1’01 interval-based approaches we
show that the technique will choose the best hypoth-
eses, orone € close. to the best, with the requested
probabilit y. Forthe expected loss approach wec.
show that the technigue will exhibitno more that the
I equestedlevel of expectedloss.

The statistical 1anking and selection lilt.latulc uses
a stand ard class of synthetic problems for evalu -
ing the statistical c1ror of’ hypothesis evaluation
techniques called the least favorable configuration
of the population means [1kdiimfe.154 . T'his is a
patameter configuration that is most likely to cause
atechnique to choose a wiong hypothesis (one that
isnote close)and thus provides the most severe test
of the technique’s abilities. Under this configura-
tion, k - 10f the hypotheses have identical expected
utilities, p, and the remaining hypothesis has ex-
pected utility pc.. The lasthypothesis has the high-
est expected utility and should be chosen by the
technique. The costs and variances of all hypothe-
ses a cequal.

We test cach technique on the least favorable con-
figutation under a varicty of control patameter set-
tings. The least favorable configur ation becor nes
more difficult (requires more examples) as the con-
fidence yY, the number of hypotheses k, 01 conunon

2. Vor details of these algorithins sce. [(lien et al 94).

utility vanance o?, increa ses. It becomces easier as
the indifference inter val €, increases. In the stan-
dardmethodology a teclmique is evaluated varying,
values for k, y¥, and ok. The last ter m combines the
vatiance and indifference interval size into a single
quantity which as it incicases makes the problem
mote difficult. 1°01 ougexperiments, Hgis set 1o
seven, pis fifty, o” is sixty-foul, and all other parain-
ctersare varied asindicated in theesults. All exper-
imental tials are 1epeated 5000 tinaes 1o obtain
statistically reliable 1csults. A The le.suits from these
expetinents, in Table Tbelow, show that as the 1e-
quested confidence inci cases, the S1°01' 1 algorithin
conectly take.s moie training exaimples to ehsur e
that the requested accuracy level is achieved.

‘The expected 10ss approach 1il 1was also evaluated
in the Ieast favorable configuration to test the algo-
rithms ability to bound expected 10ss. i1 was
tested onvatious 10ss thiesholds, 174, over this prob-
lem. Foi this evaluation, pis fifty, all hypotheses
share aco mnon utility variance of sixty- four, and
e is two, k: 3, S10, 11#:1.0,0.75, 0.5, 0.75. The

‘sample size 1esults and obser ved 10ss values ate.

suminatized below inTable 1. The resultsillustiate
thatas the. loss threshold islowered El 1takes more
training examples to ¢ nsure the expected 10ss 1¢-
mains below the threshold. Again, all tnials are 1c-
peated 50(K) tirnes.

i STOP] 1+ 1.1
05 |1253 1,0 307
(()-85) (0.67)
090 |1976 0"/5 332
(0).93) (0.67)

0,95 2596 0.5 399
(().95) (0.1%))

025 |49/

0-07)

Table 1:1 .cast Favorable Cafiguration Results

Bothisystems satisfied their statistical 1equireinents.
I 11 each configuration STOPT selected the correct
hypothesis with at lcast as much confidence as re-
quested. The expected loss exhibited by 11,1 was
3. Another impor tant question with the inte-
val-based approach is its ¢ fliciency when all hypothe-
ses arc indifferent to each other. 1 ivaluations in this
config uration pive comparable efficiency to the least
favorable configuration, butspace precludes presen -
tation of those 1esults.




no g reater than the loss threshold. As expected the
number of examples required increased as the ac-
ceptableerrorlevel or loss 1H1CSI10OM decieased. The
nutnber of examples required by the two techniques
should 1ot be compared directly as each algon ithim
issolving adifferent task. 1.aterwe will discuss the
relationship between the efficiency of  the ap-
1)1 oaches.

2.2 NASA SCHEDULING DATA

The test of 1cal-worldapplicability is based on data
drawn from an actual NASA schicduling applica-
tion. This data provides astrong test of the applica-
bility of the techniques. All of the statistical
techniques make some form of normality assuimp-
tion, llowc.vc? the datain thisapplication ishighly
non-normal - in fact most of the distributions are
bi-modal. This characteristic provides a rather se-
vere test of the robustness of the approaches.

Ouwr pai ticulat application has been adaptive leai n-
ing of heuristics for alagrang ian relaxation [Fish -
c181 ] scheduler developed by Col in el | called
1,1<-26 [13¢l193] 10 schedule communications be-
tween NASA/IPL antennmas and low cair th orbiting
satellite.s. 1,1<- 26 formulates the. scheduling prol:
lem as aninteger linear programming, problemn and
atypica problemin this domain has approximately
650 variables and 1300 constiaints.

The goalof time e.valuations was to choosc ahcu-
1istic that solved scheduling problems quickly on
average . This is easily scen as ahypothesis evalua-
tion problem. Hach of the heutistics cotresponds to
a hiypothesis. The cost of evaluating a hypothesis
over atraining example is the. cost of solving the
scheduling problem with the given heuristic. The
utility of the training example is simply the negation
of its cost. In that way, choosing ahypothesis with
maximal expected utility cormresponds to choosing a
scheduling heutistic with minimal average cost.

Application of the COMPOSIER method of adap-
tive problem solving [Gratch93] 1o this domain has
produced very promising results. Hotone version of
the problein, the goal is to lcarn heuristics to allow
forfaster construction of schedules. For this appli-
cation [Gratch et al. 93a, Gratch & Chicn 93],
learned heuristics produced the [c.suits of: 50% re-
duction in CPU time to construct a schedule for
solvable problems, and a15% incicase in the num-
berof solvable problems within1 esour ce bour 1ds.
1'01 asecond version of the problemn, the goal is to

lcarn heur istics to choose poal constiaints to 1elax
whien it appears that the problems posed to the
scheduleris unsolvable. In this application, the util-
ity is negative the number of constraintsielaxedin
the final solution. Preliminary tests showed arange
from -681 to -35 inaverage utility inthe control
space, with anaverage utility of -1 3-/. Over G tnials,
COMPOSER pickedthe beststiategy inevery trial.
Weate currently in the process of euriching the heu-
1istic space. for this application.

Currently, we are using, data fiom this scheduling,
application to fur ther test our adaptive problem
solving techmiques. The scheduling application in-
volved sever al hypothesis evaluat ion pr oblems,
four of which we. usein this evaluation. Hach prob-
lem conesponds Lo a compatison of some set of
scheduling hewristics, and contains data on the heu-
ristics’ perfor 1 nance over about one  thousand
scheduling problems.  An experimental trial con-
sists Of executing atechnique overone of these data
sets. Fach lime a training example is to be pro-
cessed, some problemis drawnrandomly fromthe
data set with replacement.  ‘The actual utility and
cost values associated with this scheduling problem
is thenused. As in the synthetic data, cach expes-
imental trial isrepeated 5000 times and all reported
Ic.suitsare the average of tile.sc. tiials.

We ran the interval- based hypothesis selection
method (S1'01'1), the cost sensitive inter val - based
method (S1°01'7), the COMPOSER approach, and
anexisting statistical technique by Tutnbull and
Weiss [Turnbull & Weiss 87] over the fourschedul -
ing data sets. I cach case the confidence level was
set at 95%, and ny set to fifteen. These results,
shownin‘lable 2., show that the interval- based
techmiques significantly outperformed the Turnbull
and COMPOSIR techniques and that §1'01 2.
slightly outpeiformed S 1'01' 2. We a0 ranthe ex-

pected 10ss techniques 141 .Jand 1.2 (cost sensitive)
ovet the fout scheduling data sets. In cach casc the
10ss threshold was set at three. and iy was fifteen.
Table 3summatizes the. 1esults along with the num-

ber of ypotheses and the relative difficulty (o/e) of
cach data set. These resultsinTable 3 show that the
expected 1oss approaches bounded the expected
10ss as predicted.

2.3 Comparing STOP1 and Kl .1

It is difficultto directly compare the petformance of
S'1I'()]] and 1i1,] as the algotithms are accomplish-
ing different tasks. S'1'01'1 is attempting toidentify



Paramecters ”

STOP 1 STOP? TURNBUILY COMPOSER
k v o/t

- 1t -
(b1 | 3 095 | 34 908 (1.00) 618 (1 .00) H 26,691 (1 00) 78 (1,00)

—e . o |
w2 | 2| 095 [ 34 74 (1 .00) 76 (1 .00) || 13,066 (1 .00) 346 (1.00)
™| o7 095 | 14 25-'1 (0.94) 2,153 (0.93) ||94 308 (1 00) @5(, (0.91)
o | 7| 09s | u || 7972 (0.96) 7,621(0.94) * 81,35 K o()) 21,317 (0.89)

‘1 able 2: Yistimated expected total number of observations for scheduling data.
Achieved probability of acorrect selection is shown in parenthesis.

Paran lers ko | I &' P S
k ' Obscrvations 1.oss Observations Loss
DI 3 V 3. N 78 0.1 e 49 R 1.0 )
02| 2 soff a0 | s || a0 | s
1)3 :7 30 o A'ﬂﬁ . 30 o 177 o 39
1| 7 30| s 17 | 83 | 22

‘1 able 3:1 istimated expected total number of observations and

expected 10ss of anincorrect selection for the scheduling data.

a ncarly optimal hypothesis with high confidence elsyt= 0.75,0.90,0.95 andan indiffcmnce level of

while 1411 isattempting to minimize, the cost of a
mistaken selection. I the goal of the. task is toiden-
tify the. best hypothesis then clearly STOIP] should
be use. If the. goal is to simply improve expected
utility as much as possible, either could be used and
itis unclear which is tobe prefen ccl. This section
attempts to assess this question cm the N ASA sched-
uling domain, We run each algorithm under a vai-
cty of parameter scttings and compare the best
performance of cachalgorithm.

To directly compare S1'01'1 and KL, weranacom-
prehensive adaptive scheduling test. In this test,
S1'01'1 and EL1all were given the task of optimiz-
ing several control parameters of an adapt i ve sched-
uler, with the. goal of speeding up the schedule
generation process, This task corresponds tothe -
quential solution of the problems D1through 1>4
posedin the scheduling test (for more details on this
application domain sec [ Gratch et al. 93]. In this test
the STOP1al gorithm was run with confidence lev-

1.0, and El.1was runwith loss bound 1.2 5, 1,().5.
I'he best settings found and averaged lcsulls result-
ing from 1000 runs are shown below in Table 4.

Cost Examp. Utility
(cry
Days)
STOrL 1.94 4199 17.1
(0.75,1.0)
HIL1(0.5) | 1.84 2630 17.3

STOPland 1.1

These results show that the two algorithms produce
roughly comparable utilities, the difference inutili-
tics is smaller than the indifference interval speci-
fied to STOPIL. I lowever, the STOPI algorithm
requires nearly twit.c. the examples cm average to
achicve this utility. While it is difficult to generalize
this result to other applications, this and other em-
pirical results has suggested to us that the expected

Table 4: Direct Comparison of ¢



10ss approach ismore efficient at the task of improv-
ing expected utility.

3CONC] 1 ISION

This paper has described techniques for choosing
among asc.( of alternatives in the presence of incom-
plete infor mation and varying costs of acquiring in-
formation. In our approach, we model the cost and
utility of various alternatives using parameter ized
Statistical models. By applying techniques from an
area of statistics called parameler estimation, statis-
ticalmodels can be inferred from data regarding the
utility and information cost of each of the various al-
ternatives. 1 'hese stat istical models can then be used
to estimate the utility and cost of acquiring addition-
a information and the utility of sclecting specific al-
ternatives from the possible choices at hand. We
apply these techniques to adaptive. problem: solv-
ing, atechnique in which a system automatically
tunes various control parameters on aperformance
clement to improve performance in a given domain,
We present empirical results comparing the effec-
tiveness of these techniques on two applications in
ared- world domain: speedup learning from areal-

world N A SA scheduling domain and schedule
quality data from the. same. real- work] NASA
scheduling domain.
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